STRES OKSIDATIF YANG DIINDUKSI OLEH LATIHAN FISIK
DOI:
https://doi.org/10.29303/jku.v11i4.900Keywords:
Latihan fisik, stres oksidatif, produksi oksidanAbstract
Aktivitas dan latihan fisik yang teratur dapat membantu untuk tetap sehat Namun demikian di sisi lain, latihan fisik sendiri berperan sebagai pemicu stres oksidatif. Jika pertahanan antioksidan kurang maka kerusakan dapat terjadi pada berbagai jaringan. Produksi oksidan yang berkaitan dengan latihan fisik dapat terjadi melalui beberapa jalur, yaitu: Kebocoran elektron dari rantai transfer elektron mitokondria, xanthine oxidase mengubah hypoxanthine menjadi asam urat, namun dengan menggunakan oksigen sebagai akseptor elektron untuk membentuk superoksida selama reperfusi, produksi radikal bebas oleh NADPH oxidase, pembentukan superoksida pada mitokondria otot akibat peningkatan temperatur dan autooksidasi oksihemoglobin menjadi methemoglobin, menyebabkan produksi superoksida
References
2.Caspersen, C.J., Powell, K.E., & Christenson, G.M. (1985). Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Reports, Vol. 100, No. 2.
3.Radak, Z., Chung, H. Y., & Goto, S. (2007). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radical Biology & Medicine 44 (2008) 153–159, doi:10.1016/j.freeradbiomed.2007.01.029
4.Yoshikawa, T., & Naito, Y. (2002). What is oxidative stress? JMAJ 45(7): 271–276, 2002
5.Halliwel, B. (1991). Reactive oxygen species in living systems: Source, Biochemistry, and role in human disease. The American Journal of Medicine, Volume 91, Issue 3, Supplement 3, pp. 514-522
6.Betteridge, D.J. (2000). What is oxidative stress. Metabolism, Vol. 49, Issue 2, Supplement 1, pp.3-8, https://doi.org/10.1016/S0026-0495(00)80077-3
7.Azizbeigi, K., Stannard, S.R., Atashak, S, Haghighi, M.M. (2014). Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. Journal of Exercise Science and Fitness, Vol. XX, pp. 1-6.
8.Miller, M.M., Buettner, G.R., & Aust, S.D. (1990). Transition metals as catalysts of "autoxidation" reactions. Free Radical Biology and Medicine, Vol. 8, Issue 1, pp. 95-108, https://doi.org/10.1016/0891-5849(90)90148-C
9.Granger, D.N. (1988). Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory Physiology Vol. 255, No. 6, https://doi.org/10.1152/ajpheart.1988.255.6.H1269
10.Birben, E., Sahiner, U.M., Sackesen, et al. (2012) Oxidative stress and antioxidant defense. WAO Jornal, 5:9–19.
11.Klebanoff, S.J. (2005). Myeloperoxidase: friend and foe. Journal of Leucocyte Biology, Vol. 77, No.5 , pp. 598-625, https://doi.org/10.1189/jlb.1204697
12.Eiserich, J.P., Baldus, S., Brennan, M.L., et al. (2002). Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science, Vol. 296, Issue 5577, pp. 2391-2394, DOI: 10.1126/science.1106830.
13.Denzler, K.L., Borchers, M.T., Crosby, J.R., et al. (2001). Ovalbumin-challenge model of pulmonary proteins do not occur in a mouse peroxidase-mediated oxidation of airway extensive eosinophil degranulation and inflammation. J Immunol, Vol. 167, pp. 1672-168, doi: 10.4049/jimmunol.167.3.1672.
14.Van Dalen, C.J., Winterbourn, C.C., Santhilmohan, R., & Kettle, A.J. (2000). Nitrite as a substrate and inhibitor of myeloperoxidase: Implications for nitration and hypochlorous acid production at sites of inflammation. The Journal of Biological Chemistry, Vol. 275, No. 16, pp. 11638–11644.
15.Wood, L.G., Fitzgerald, D.A., Gibson, P.G., et al. (2000). Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids, Vol. 35, No. 9, pp. 967-974
16.Montuschi, P., Corradi, M., Ciabattoni, G., et al. (1999). Increased 8-Isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. American Journal of Respiratory and Critical Care Medicine, Vol.160, No.1, https://doi.org/10.1164/ajrccm.160.1.9809140.
17.Afonso, V., Champy, R., Mitrovic, D., et al. (2007). Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, Vol. 74, Issue 4, pp. 324-329, https://doi.org/10.1016/j.jbspin.2007.02.002
18.Kunwar, A & Priyadarsini, K.I. (2011). Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci, 1(2), 53-60.
19.Droge, W. (2002). Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, Vol. 82, No.1, https://doi.org/10.1152/physrev.00018.2001
20.Schreck, R & Baeuerle, P.A. (1991). A role for oxygen radicals as second messengers. Trends in Cell Biology, Vol. 1, Issues 1-3, pp. 39-42, https://doi.org/10.1016/0962-8924(91)90072-H
21.Winterbourn, C.C., & Hampton, M.B. (2008). Thiol chemistry and specificity in redox signalling. Free Radical Biology and Medicine, Vol. 45, Issue 5, pp. 549-561, https://doi.org/10.1016/j.freeradbiomed.2008.05.004
22.Halliwell, B. (1994). Free radicals and antioxidants: A Personal View Nutrition Reviews, Volume 52, Issue 8, pp. 253–265, https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
23.Lovlin, R., Cottle, W., Pyke, I., et al. (1987). Are indices of free radical damage related to exercise intensity. European Journal of Applied Physiology and Occupational Physiology, Volume 56, Issue 3, pp. 313–316, https://doi.org/10.1007/BF00690898
24.Ji, L., L. (1999). Antioxidant and oxidative stress in exercise. Society for Experimental Biology and Medicine
25.Sjodin, B., Westing, Y. H., & Apple, F. S. (1990). Biochemical Mechanisms for Oxygen Free Radical Formation During Exercise, Sports Medicine, 10(4), 236–254.
26.Kanter, M., Nolte, L.A., & Holloszy, J.O. (1993). Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. Journal of Applied Physiology, Vol. 74, No. 2, https://doi.org/10.1152/jappl.1993.74.2.965
27.Sacheck, J.M., & Blumberg, J.B. (2001). Role of vitamin E and oxidative stress in exercise. Nutrition, Vol. 17, Issue 10, pp. 809-814, https://doi.org/10.1016/S0899-9007(01)00639-6
28.Alessio, H.M. (1993). Exercise-induced oxidative stress. Medicine and Science in Sports and Exercise, Vol, 25, No. 2, pp. 218-224
29.Ji, L. L. (1993). Antioxidant enzyme response to exercise and aging. Medicine and Science in Sports and Exercise, Vol. 25, No. 2. pp. 225-231
30.Groussard, C., Rannou-Bekono, F., & Machefer, G. (2002). Changes in blood lipid peroxidation markers and antioxidants after a single sprint anaerobic exercise. Eur J Appl Physiol, Vol. 89, Issue 14–20, DOI 10.1007/s00421-002-0767-1
31.Ramel, A., Wagner, K.H., & Elmadfa, I. (2004). Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. Eur J Nutr, Vol. 43, Issue 2–6, DOI 10.1007/s00394-004-0432-z
32.Ashton, T., Rowlands, C.C., Jones, E., et al. (1998). Electron spin resonance spectroscopic detection of oxygen-centred radicals in human serum following exhaustive exercise. European Journal of Applied Physiology and Occupational Physiology, Volume 77, Issue 6, pp. 498–502, https://doi.org/10.1007/s004210050366.
33.Packer, L. (1997). Oxidants, antioxidant nutrients and the athlete. Journal of Sports Sciences, Vol. 15, Issue 3, pp. 353-363, https://doi.org/10.1080/026404197367362
34.Kanter, M. (1998). Free radicals, exercise and antioxidant supplementation. Proceeding of The Nutrition Society, Vol. 57, Issue 1, pp. 9-13, DOI: https://doi.org/10.1079/PNS19980004
35.Heunks, L.M.A., & Dikhuijzen, P.N.R. (2000). Respiratory muscle function and free radicals: from cell to COPD. Thorax, Vol. 55, pp. 704–716
36.Sealy, R.C., Sarna, T., Wanner, E.J., & Reszka, K. (1984). Photosensitization of melanin: An electron spin resonance study of sensitized radical production and oxygen consumption. Photochemistry and Photobiology, Vol. 40, No. 4. pp. 453 - 459
37.Gohil, K., Viguie, C., Stanley, W.C., et al. (1988). Blood glutathione oxidation during human exercise. Journal of Applied Physiology, Vol. 64, No. 1https://doi.org/10.1152/jappl.1988.64.1.115