Kadar VCAM-1 Darah Tepi Dan Wilkins Score Pada Stenosis Mitral Penyakit Jantung Rematik
DOI:
https://doi.org/10.29303/jku.v10i4.606Abstrak
Abstrak
Latar Belakang: Vascular cell adhesion molecule-1 (VCAM-1) adalah suatu protein penting dalam progresivitas kerusakan katup mitral pada penyakit jantung rematik. Untuk mengukur kerusakan katup mitral dikenal suatu sistem penilaian bernama Wilkins Score, yang terdiri atas kategori gangguan mobilitas katup, penebalan katup, kalsifikasi katup dan penebalan sub-valvular. Penelitian ini menganalisis kadar VCAM-1 darah tepi dan Wilkins Score pada penderita stenosis mitral penyakit jantung rematik.
Metode: Studi analitik-observasional ini menggunakan desain cross sectional. Sampel 45 penderita stenosis mitral penyakit jantung rematik dikumpulkan secara consecutive sampling. Dilakukan pemeriksaan kadar VCAM-1 darah tepi melalui akses vena tepi, dan dilakukan pemeriksaan ekhokardiografi untuk menilai Wilkin Score serta parameter terkait lainnya. Sebagai pembanding dikumpulkan juga data 22 subyek normal.
Hasil: Rerata Wilkins Score penderita stenosis mitral penyakit jantung rematik adalah 9,09 ± 1,81. Rerata kadar VCAM-1 darah tepi penderita dan subyek normal, yaitu 1.155,3 ± 328,8 ng/mL dan 605,5 ± 100,4 ng/mL. Terdapat perbedaan kadar VCAM-1 darah tepi yang bermakna diantara kedua kelompok (p<0,001). Didapatkan korelasi positif yang bermakna antara kadar VCAM-1 darah tepi dan gangguan mobilitas katup (p<0,001, r = +0,522), penebalan katup (p<0,001, r = +0,583), kalsifikasi katup (p<0,001, r = +0,538), penebalan sub-valvular (p<0,001, r = +0,647), dan Wilkin Score(p<0,001, r = +0,841).
Kesimpulan: Terdapat korelasi positif yang bermakna antara kadar VCAM-1 darah tepi dan Wilkins Score pada stenosis mitral penyakit jantung rematik.
Kata Kunci: VCAM-1 - Wilkins Score - Stenosis Mitral - Penyakit Jantung Rematik
Referensi
2. Rheumatic fever and rheumatic heart disease: report of a WHO expert consultation. Geneva: World Health Organization; 2001. 13–18 p. (923).
3. Guilherme L, Kalil J, Cunningham MW. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39(1):31–9.
4. Guilherme L, Kalil J. Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol. 2010;30:17–23.
5. Carapetis JR. Rheumatic heart disease in Asia. Circulation. 2008;118:2748–53.
6. Bonow RO, Carabello BA, Chatterjee K, Leon AC de, Faxon DP, Freed MD, et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Circulation. 2008;118(15):e523–661.
7. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Journal of the American Society of Echocardiography. 2009;22(1):1–23.
8. Singh RJR, Mason JC, Lidington EA, Edwards DR, Nuttall RK, Khokha R, et al. Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc Res. 2005;67(1):39–49.
9. Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA, et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood. 2005;106(1):86–94.
10. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest. 2001;107(10):1255–62.
11. Fotis L, Giannakopoulos D, Stamogiannou L, Greece A. Intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 in children. Do they play a role in the progression of atherosclerosis? Hormones. 2012;11(2):140–6.
12. Braun M, Pietsch P, Schrör K, Baumann G, Felix SB. Cellular adhesion molecules on vascular smooth muscle cells. Cardiovasc Res. 1999;41(2):395–401.
13. Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Medicinal Research Reviews. 2002;22(2):146–67.
14. Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends in Pharmacological Sciences. 2003;24(12):640–7.
15. Foster CA. VCAM-1/?4-integrin adhesion pathway: Therapeutic target for allergic inflammatory disorders. Journal of Allergy and Clinical Immunology. 1996;98(6, Part 2):S270–7.
16. McMurray RW. Adhesion molecules in autoimmune disease. Seminars in Arthritis and Rheumatism. 1996;25(4):215–33.
17. Cunningham MW. Autoimunity and molecular mimicry in the pathogenesis of post-streptococal heart disease. Frontiers in Bioscience. 2003;8:s533–43.
18. Nilsson J. Cytokine and smooth muscle cells in atherosclerosis. Cardiovasc Res. 1993;27:1184–90.
19. Artola RT, Mihos CG, Santana O. The immunology of mitral valve stenosis. International Journal of Interferon, Cytokine and Mediator Research. 2011;3:1–8.
20. Guilherme L, Faé K, Oshiro SE, Kalil J. Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Reviews in Molecular Medicine. 2005;7(28):1–14.
21. Tandon R. Rheumatic fever pathogenesis: approach in research needs change. Annals of Pediatric Cardiology. 2012;5(2):169–78.
22. van der Bel-kahn J, Becker AE. The surgical pathology of rheumatic and floppy mitral valves. Distinctive morphologic features upon gross examination. Am J Surg Pathol. 1986;10(4):282–92.
23. Olson LJ, Subramanian R, Ackermann DM. Surgical pathology of the mitral valve: a study of 712 cases spanning 21 years. Mayo Clin Proc. 1987;62(1):22–34.
24. Schoen FJ, Padera RFJ. Cardiac surgical pathology. In: Cohn LH, Edmunds LHJ, editors. Cardiac surgery in the adult. New York: McGraw-Hill Companies; 2003. p. 119–85.
25. Rashed M, Nagm M, Ragab N. Clinical and histopathologic study of surgically excised mitral valves in children. The Internet Journal of Pathology. 2006;5(2).
26. Rajamannan NM, Nealis TB, Subramaniam M. Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation. 2005;111:3296–301.
27. Mazzone A, Epistolato MC, De Caterina R, Storti S. Neoangiogenesis, T-lymphocyte infiltration, and heat shock protein-60 are biological hallmarks of an immunomediated inflammatory process in end-stage calcified aortic valve stenosis. J Am Coll Cardiol. 2004;43(9):1670–6.
28. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988;60(4):299–308.
29. Alatas H, Karyomanggolo WT, Musa DA, Boediarso A, Oesman IN, Idris NS. Desain penelitian. In: Sastroasmoro S, Ismael S, editors. Dasar-dasar metodologi penelitian klinis. 4th ed. Jakarta: Sagung Seto; 2011. p. 104–27.
30. Sastroasmoro S. Pemilihan subyek penelitian. In: Sastroasmoro S, Ismael S, editors. Dasar-dasar metodologi penelitian klinis. 4th ed. Jakarta: Sagung Seto; 2011. p. 88–101.
31. Ellis NMJ, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. The Journal of Immunology. 2005;175:5448–56.
32. Guilherme L, Cury P, Demarchi LMF, Coelho V, Abel L, Lopez AP, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583–91.
33. Sampaio RO, Fae´ KC, Demarchi LMF, Pomerantzeff PMA, Aiello VD, Spina GS, et al. Rheumatic heart disease: 15 years of clinical and immunological follow-up. Vascular Health and Risk Management. 2007;3(6):1007–17.
34. Roberts S, Kosanke S, Terrence Dunn S, Jankelow D, Duran CM, Cunningham MW. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis. 2001;183(3):507–11.
35. Yetkin E, Erbay AR, ?eri M, Turhan H, Balci M, Çehreli S, et al. Levels of circulating adhesion molecules in rheumatic mitral stenosis. American Journal of Cardiology. 2001;88(10):1209–11.
36. Chen L-P, Liu H, Huang Y, Zhang X-Y, Alexander RE, Cheng L. Expression of NFkappaB, ICAM1, and VCAM1 in rheumatic heart disease with atrial fibrillation. Anal Quant Cytol Histol. 2013;35(5):249–52.