Cdk5 Sebagai Target Potensial Penemuan Obat Anti Nyeri Kronik
DOI:
https://doi.org/10.29303/jku.v12i3.968Keywords:
Chronic pain, , Cdk5, Cdk5 inhibitorAbstract
Chronic pain is a very disturbing condition and to date, no effective and safe medicine has been found. This could be caused by existing drugs not targeting the key factor in pain transmission. Cdk5 is a protein kinase that has been shown to have a key role in the transmission of chronic pain. These important roles include: activation of TRPV1, NMDA, P/Q type voltage-dependent calcium channels, and ATP-gate P2X receptors. Cdk5 could be used as a potential target in the development of new anti-chronic pain drugs. Several aspects of concern in developing this drugs are the role of Cdk5 in physiological and pathological conditions because it’s will be related to the risk of side effects. Another factor that really needs to be considered is the location of Cdk5 expression because it will related to the drug design. Several drugs that have been developed as Cdk5 inhibitors are roscovitin, olomoucine, and indirubin.
References
Abraham, R. T., Acquarone, M., Andersen, A., Asensi, A., Bellé, R., Berger, F., Bergounioux, C., Brunn, G., Buquet-Fagot, C., & Fagot, D. (1995). Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases. Biology of the Cell, 83(2–3), 105–120. https://doi.org/10.1016/0248-4900(96)81298-6
Allnutt, A. B., Waters, A. K., Kesari, S., & Yenugonda, V. M. (2020). Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chemical Neuroscience, 11(9), 1218–1230. https://doi.org/10.1021/acschemneuro.0c00096
Aobchey, P., Sinchaikul, S., Phutrakul, S., & Chen, S. T. (2007). Simple purification of indirubin from Indigofera tinctoria Linn. and inhibitory effect on MCF-7 human breast cancer cells. Chiang Mai J. Sci., 34(3), 329–337.
Berger, J. M., & Zelman, V. (2016). Pathophysiology of Chronic Pain. Pain Medicine, 1(2 SE-Lecture). https://painmedicine.org.ua/index.php/pnmdcn/article/view/12
Chen, M.-C., Lin, H., Hsu, F.-N., Huang, P.-H., Lee, G.-S., & Wang, P. S. (2010). Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells. American Journal of Physiology. Cell Physiology, 299(2), C516-27. https://doi.org/10.1152/ajpcell.00534.2009
Chiker, S., Pennaneach, V., Loew, D., Dingli, F., Biard, D., Cordelières, F. P., Gemble, S., Vacher, S., Bieche, I., Hall, J., & Fernet, M. (2015). Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients. Cell Cycle (Georgetown, Tex.), 14(19), 3066–3078. https://doi.org/10.1080/15384101.2015.1078020
Cicenas, J., Kalyan, K., Sorokinas, A., Stankunas, E., Levy, J., Meskinyte, I., Stankevicius, V., Kaupinis, A., & Valius, M. (2015). Roscovitine in cancer and other diseases. Annals of Translational Medicine, 3(10), 1–12. https://doi.org/10.3978/j.issn.2305-5839.2015.03.61
Cohen, I., & Lema, M. J. (2020). What’s new in chronic pain pathophysiology. Canadian Journal of Pain, 4(4), 13–18. https://doi.org/10.1080/24740527.2020.1752641
Havlíček, L., Hanuš, J., Veselý, J., Leclerc, S., Meijer, L., Shaw, G., & Strnad, M. (1997). Cytokinin-Derived Cyclin-Dependent Kinase Inhibitors: Synthesis and cdc2 Inhibitory Activity of Olomoucine and Related Compounds. Journal of Medicinal Chemistry, 40(4), 408–412. https://doi.org/10.1021/jm960666x
Kumar Pareek, T. (2012). Cdk5: An Emerging Kinase in Pain Signaling. Brain Disorders & Therapy, 01(s1). https://doi.org/10.4172/2168-975x.s1-003
Kumar, S. K., LaPlant, B., Chng, W. J., Zonder, J., Callander, N., Fonseca, R., Fruth, B., Roy, V., Erlichman, C., & Stewart, A. K. (2015). Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. Blood, 125(3), 443–448. https://doi.org/10.1182/blood-2014-05-573741
Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J. A., Snyder, G. L., Greengard, P., Biernat, J., Wu, Y. Z., Mandelkow, E. M., Eisenbrand, G., & Meijer, L. (2001). Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? The Journal of Biological Chemistry, 276(1), 251—260. https://doi.org/10.1074/jbc.m002466200
Lin, S. F., Lin, J. Der, Hsueh, C., Chou, T. C., & Wong, R. J. (2017). A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS ONE, 12(2), 1–18. https://doi.org/10.1371/journal.pone.0172315
Liu, J., Yang, J., Xu, Y., Guo, G., Cai, L., Wu, H., Zhao, Y., & Zhang, X. (2017). Roscovitine, a CDK5 Inhibitor, Alleviates Sevoflurane-Induced Cognitive Dysfunction via Regulation Tau/GSK3β and ERK/PPARγ/CREB Signaling. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44(2), 423–435. https://doi.org/10.1159/000485008
Mills, S. E. E., Nicolson, K. P., & Smith, B. H. (2019). Chronic pain: a review of its epidemiology and associated factors in population-based studies. British Journal of Anaesthesia, 123(2), e273–e283. https://doi.org/10.1016/j.bja.2019.03.023
Muzayyinah. (2014). Indigofera: “Kini dan Nanti.” Bioedukasi: Jurnal Pendidikan Biologi, 7(2), 23. https://doi.org/10.20961/bioedukasi-uns.v7i2.2932
Nemunaitis, J. J., Small, K. A., Kirschmeier, P., Zhang, D., Zhu, Y., Jou, Y. M., Statkevich, P., Yao, S. L., & Bannerji, R. (2013). A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. Journal of Translational Medicine, 11(1). https://doi.org/10.1186/1479-5876-11-259
Pao, P. C., & Tsai, L. H. (2021). Three decades of Cdk5. Journal of Biomedical Science, 28(1), 1–17. https://doi.org/10.1186/s12929-021-00774-y
Pfänder, P., Fidan, M., Burret, U., Lipinski, L., & Vettorazzi, S. (2019). Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. 10(July), 1–13. https://doi.org/10.3389/fimmu.2019.01554
Qorib, M. F., Reny, I., Sudjarwo, S. A., & Basori, A. (2021). The Role of Cdk5 and TRPV1 in Meloxicam Resistance Signal Transduction in Rat Experiencing Chronic Pain. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3775–3784. https://doi.org/10.37506/ijfmt.v15i3.15884
Saqub, H., Proetsch-Gugerbauer, H., Bezrookove, V., Nosrati, M., Vaquero, E. M., de Semir, D., Ice, R. J., McAllister, S., Soroceanu, L., Kashani-Sabet, M., Osorio, R., & Dar, A. A. (2020). Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Scientific Reports, 10(1), 18489. https://doi.org/10.1038/s41598-020-75578-5
Schwan, J., Sclafani, J., & Tawfik, V. L. (2019). Chronic Pain Management in the Elderly. Anesthesiology Clinics, 37(3), 547–560. https://doi.org/10.1016/j.anclin.2019.04.012
Tian, Z., Feng, B., Wang, X.-Q., & Tian, J. (2022). Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Frontiers in Molecular Neuroscience, 15, 1030639. https://doi.org/10.3389/fnmol.2022.1030639
Utreras, E., Futatsugi, A., Pareek, T. K., & Kulkarni, A. B. (2009). Molecular roles of Cdk5 in pain signaling. In Drug Discovery Today: Therapeutic Strategies (Vol. 6, Issue 3, pp. 105–111). Elsevier Ltd. https://doi.org/10.1016/j.ddstr.2009.04.004
Wahyuningsih, S., Ramelan, A. H., Wardani, D. K., Aini, F. N., Sari, P. L., Tamtama, B. P. N., & Kristiawan, Y. R. (2017). Indigo Dye Derived from Indigofera Tinctoria as Natural Food Colorant. IOP Conference Series: Materials Science and Engineering, 193(1). https://doi.org/10.1088/1757-899X/193/1/012048
Xing, B. M., Yang, Y. R., Du, J. X., Chen, H. J., Qi, C., Huang, Z. H., Zhang, Y., & Wang, Y. (2012). Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. Journal of Neuroscience, 32(42), 14709–14721. https://doi.org/10.1523/JNEUROSCI.1634-12.2012
Zheng, Y.-L., Zhang, X., Fu, H.-X., Guo, M., Shukla, V., Amin, N. D., E, J., Bao, L., Luo, H.-Y., Li, B., Lu, X.-H., & Gao, Y.-C. (2016). Knockdown of Expression of Cdk5 or p35 (a Cdk5 Activator) Results in Podocyte Apoptosis. PloS One, 11(8), e0160252. https://doi.org/10.1371/journal.pone.0160252
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Kedokteran
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.