Cdk5 Sebagai Target Potensial Penemuan Obat Anti Nyeri Kronik

Authors

  • Mohammad Fathul Qorib airlangga university
  • Abdul Khairul Rizki Purba Departemen Anatomi Histologi dan Farmakologi FK Unair, Surabaya, Indonesia *Korespondensi
  • Annete d’Arqom Departemen Anatomi Histologi dan Farmakologi FK Unair, Surabaya, Indonesia *Korespondensi

DOI:

https://doi.org/10.29303/jku.v12i3.968

Keywords:

Chronic pain, , Cdk5, Cdk5 inhibitor

Abstract

Chronic pain is a very disturbing condition and to date, no effective and safe medicine has been found. This could be caused by existing drugs not targeting the key factor in pain transmission. Cdk5 is a protein kinase that has been shown to have a key role in the transmission of chronic pain. These important roles include: activation of TRPV1, NMDA, P/Q type voltage-dependent calcium channels, and ATP-gate P2X receptors. Cdk5 could be used as a potential target in the development of new anti-chronic pain drugs. Several aspects of concern in developing this drugs are the role of Cdk5 in physiological and pathological conditions because it’s will be related to the risk of side effects. Another factor that really needs to be considered is the location of Cdk5 expression because it will related to the drug design. Several drugs that have been developed as Cdk5 inhibitors are roscovitin, olomoucine, and indirubin.

References

Abraham, R. T., Acquarone, M., Andersen, A., Asensi, A., Bellé, R., Berger, F., Bergounioux, C., Brunn, G., Buquet-Fagot, C., & Fagot, D. (1995). Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases. Biology of the Cell, 83(2–3), 105–120. https://doi.org/10.1016/0248-4900(96)81298-6

Allnutt, A. B., Waters, A. K., Kesari, S., & Yenugonda, V. M. (2020). Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chemical Neuroscience, 11(9), 1218–1230. https://doi.org/10.1021/acschemneuro.0c00096

Aobchey, P., Sinchaikul, S., Phutrakul, S., & Chen, S. T. (2007). Simple purification of indirubin from Indigofera tinctoria Linn. and inhibitory effect on MCF-7 human breast cancer cells. Chiang Mai J. Sci., 34(3), 329–337.

Berger, J. M., & Zelman, V. (2016). Pathophysiology of Chronic Pain. Pain Medicine, 1(2 SE-Lecture). https://painmedicine.org.ua/index.php/pnmdcn/article/view/12

Chen, M.-C., Lin, H., Hsu, F.-N., Huang, P.-H., Lee, G.-S., & Wang, P. S. (2010). Involvement of cAMP in nerve growth factor-triggered p35/Cdk5 activation and differentiation in PC12 cells. American Journal of Physiology. Cell Physiology, 299(2), C516-27. https://doi.org/10.1152/ajpcell.00534.2009

Chiker, S., Pennaneach, V., Loew, D., Dingli, F., Biard, D., Cordelières, F. P., Gemble, S., Vacher, S., Bieche, I., Hall, J., & Fernet, M. (2015). Cdk5 promotes DNA replication stress checkpoint activation through RPA-32 phosphorylation, and impacts on metastasis free survival in breast cancer patients. Cell Cycle (Georgetown, Tex.), 14(19), 3066–3078. https://doi.org/10.1080/15384101.2015.1078020

Cicenas, J., Kalyan, K., Sorokinas, A., Stankunas, E., Levy, J., Meskinyte, I., Stankevicius, V., Kaupinis, A., & Valius, M. (2015). Roscovitine in cancer and other diseases. Annals of Translational Medicine, 3(10), 1–12. https://doi.org/10.3978/j.issn.2305-5839.2015.03.61

Cohen, I., & Lema, M. J. (2020). What’s new in chronic pain pathophysiology. Canadian Journal of Pain, 4(4), 13–18. https://doi.org/10.1080/24740527.2020.1752641

Havlíček, L., Hanuš, J., Veselý, J., Leclerc, S., Meijer, L., Shaw, G., & Strnad, M. (1997). Cytokinin-Derived Cyclin-Dependent Kinase Inhibitors: Synthesis and cdc2 Inhibitory Activity of Olomoucine and Related Compounds. Journal of Medicinal Chemistry, 40(4), 408–412. https://doi.org/10.1021/jm960666x

Kumar Pareek, T. (2012). Cdk5: An Emerging Kinase in Pain Signaling. Brain Disorders & Therapy, 01(s1). https://doi.org/10.4172/2168-975x.s1-003

Kumar, S. K., LaPlant, B., Chng, W. J., Zonder, J., Callander, N., Fonseca, R., Fruth, B., Roy, V., Erlichman, C., & Stewart, A. K. (2015). Dinaciclib, a novel CDK inhibitor, demonstrates encouraging single-agent activity in patients with relapsed multiple myeloma. Blood, 125(3), 443–448. https://doi.org/10.1182/blood-2014-05-573741

Leclerc, S., Garnier, M., Hoessel, R., Marko, D., Bibb, J. A., Snyder, G. L., Greengard, P., Biernat, J., Wu, Y. Z., Mandelkow, E. M., Eisenbrand, G., & Meijer, L. (2001). Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? The Journal of Biological Chemistry, 276(1), 251—260. https://doi.org/10.1074/jbc.m002466200

Lin, S. F., Lin, J. Der, Hsueh, C., Chou, T. C., & Wong, R. J. (2017). A cyclin-dependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS ONE, 12(2), 1–18. https://doi.org/10.1371/journal.pone.0172315

Liu, J., Yang, J., Xu, Y., Guo, G., Cai, L., Wu, H., Zhao, Y., & Zhang, X. (2017). Roscovitine, a CDK5 Inhibitor, Alleviates Sevoflurane-Induced Cognitive Dysfunction via Regulation Tau/GSK3β and ERK/PPARγ/CREB Signaling. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 44(2), 423–435. https://doi.org/10.1159/000485008

Mills, S. E. E., Nicolson, K. P., & Smith, B. H. (2019). Chronic pain: a review of its epidemiology and associated factors in population-based studies. British Journal of Anaesthesia, 123(2), e273–e283. https://doi.org/10.1016/j.bja.2019.03.023

Muzayyinah. (2014). Indigofera: “Kini dan Nanti.” Bioedukasi: Jurnal Pendidikan Biologi, 7(2), 23. https://doi.org/10.20961/bioedukasi-uns.v7i2.2932

Nemunaitis, J. J., Small, K. A., Kirschmeier, P., Zhang, D., Zhu, Y., Jou, Y. M., Statkevich, P., Yao, S. L., & Bannerji, R. (2013). A first-in-human, phase 1, dose-escalation study of dinaciclib, a novel cyclin-dependent kinase inhibitor, administered weekly in subjects with advanced malignancies. Journal of Translational Medicine, 11(1). https://doi.org/10.1186/1479-5876-11-259

Pao, P. C., & Tsai, L. H. (2021). Three decades of Cdk5. Journal of Biomedical Science, 28(1), 1–17. https://doi.org/10.1186/s12929-021-00774-y

Pfänder, P., Fidan, M., Burret, U., Lipinski, L., & Vettorazzi, S. (2019). Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. 10(July), 1–13. https://doi.org/10.3389/fimmu.2019.01554

Qorib, M. F., Reny, I., Sudjarwo, S. A., & Basori, A. (2021). The Role of Cdk5 and TRPV1 in Meloxicam Resistance Signal Transduction in Rat Experiencing Chronic Pain. Indian Journal of Forensic Medicine & Toxicology, 15(3), 3775–3784. https://doi.org/10.37506/ijfmt.v15i3.15884

Saqub, H., Proetsch-Gugerbauer, H., Bezrookove, V., Nosrati, M., Vaquero, E. M., de Semir, D., Ice, R. J., McAllister, S., Soroceanu, L., Kashani-Sabet, M., Osorio, R., & Dar, A. A. (2020). Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Scientific Reports, 10(1), 18489. https://doi.org/10.1038/s41598-020-75578-5

Schwan, J., Sclafani, J., & Tawfik, V. L. (2019). Chronic Pain Management in the Elderly. Anesthesiology Clinics, 37(3), 547–560. https://doi.org/10.1016/j.anclin.2019.04.012

Tian, Z., Feng, B., Wang, X.-Q., & Tian, J. (2022). Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Frontiers in Molecular Neuroscience, 15, 1030639. https://doi.org/10.3389/fnmol.2022.1030639

Utreras, E., Futatsugi, A., Pareek, T. K., & Kulkarni, A. B. (2009). Molecular roles of Cdk5 in pain signaling. In Drug Discovery Today: Therapeutic Strategies (Vol. 6, Issue 3, pp. 105–111). Elsevier Ltd. https://doi.org/10.1016/j.ddstr.2009.04.004

Wahyuningsih, S., Ramelan, A. H., Wardani, D. K., Aini, F. N., Sari, P. L., Tamtama, B. P. N., & Kristiawan, Y. R. (2017). Indigo Dye Derived from Indigofera Tinctoria as Natural Food Colorant. IOP Conference Series: Materials Science and Engineering, 193(1). https://doi.org/10.1088/1757-899X/193/1/012048

Xing, B. M., Yang, Y. R., Du, J. X., Chen, H. J., Qi, C., Huang, Z. H., Zhang, Y., & Wang, Y. (2012). Cyclin-dependent kinase 5 controls TRPV1 membrane trafficking and the heat sensitivity of nociceptors through KIF13B. Journal of Neuroscience, 32(42), 14709–14721. https://doi.org/10.1523/JNEUROSCI.1634-12.2012

Zheng, Y.-L., Zhang, X., Fu, H.-X., Guo, M., Shukla, V., Amin, N. D., E, J., Bao, L., Luo, H.-Y., Li, B., Lu, X.-H., & Gao, Y.-C. (2016). Knockdown of Expression of Cdk5 or p35 (a Cdk5 Activator) Results in Podocyte Apoptosis. PloS One, 11(8), e0160252. https://doi.org/10.1371/journal.pone.0160252

Downloads

Published

2023-10-25

How to Cite

Mohammad Fathul Qorib, Abdul Khairul Rizki Purba, & Annete d’Arqom. (2023). Cdk5 Sebagai Target Potensial Penemuan Obat Anti Nyeri Kronik. Jurnal Kedokteran, 12(3), 233–239. https://doi.org/10.29303/jku.v12i3.968